1.1 Gründichte nach dem Archimedes-Prinzip

Die zur Berechnung der Gründichte nach dem Archimedes-Prinzip benötigten Massen und Dichtewerte sind in Tabelle 4 aufgelistet. Die Dichte des Grünkörpers ρ_K wird nach Gleichung (9) berechnet und ist ebenfalls in Tabelle 4 zu sehen.

Gleichung 9 war:
$$\rho_K = \frac{m_K}{\frac{m_{KL} - m_{KLF}}{\rho_F} \frac{m_{KL} - m_K}{\rho_L}}$$

Tabelle 1: Messwerte und Kennwerte zur Berechnung der ebenfalls dargestellten Gründichte nach dem Archimedischen Prinzip.

$$m_K$$
 [g] m_{KL} [g] m_{KLF} [g] ρ_F [g·cm⁻³] ρ_L [g·cm⁻³] ρ_K [g·cm⁻³]

Um die für unterschiedliche Presskräfte resultierende Gründichten miteinander zu vergleichen sind ihre relativen Dichten, die nach Gleichung (11) mit der theoretischen Dichte aus 4.4 berechnet wurden in Tabelle 5 zusammengefasst und in Abbildung 12 graphisch dargestellt.

Gleichung 11 war:
$$\rho_{rel} = \frac{\rho_{roh}}{\rho_{th}} \cdot 100\%$$

Tabelle 2: Vergleich der entsprechenden Dichten für unterschiedliche Presskräfte.

Presskraft F [kN]	m_K [g]	m_{KL} [g]	m_{KLF} [g]	$ ho_K$ [g·cm ⁻³]	$ ho_{rel}$ [%]
50	3,9189	4,0278	1,5534	1,636	
100	4,3795	4,5142	1,8819	1,726	51,4
200	4,1770	4,2914	1,9236	1,828	
800	4,2265	4,3563	2,2218	2,072	

1.2 Berechnung der theoretischen Dichte für das in Versuch 1 attritierte Si₃N₄-Pulver

Zur Berechnung der theoretischen Dichte des Si₃N₄-Pulvers werden die genauen Einwaagen von Si₃N₄, Al₂O₃ und Y₂O₃ sowie deren Dichte von nichtporösen Körpern benötigt. Diese zeigt Tabelle 6.

Tabelle 3: Mess- bzw. Kennwerte zur Berechnung der theoretischen Dichte des Si₃N₄-Pulvers.

Bestandteil des Pulvers	Si_3N_4	Al_2O_3	Y_2O_3
Dichte ρ [g·cm ⁻³]	<mark>3,20</mark>	<mark>3,99</mark>	<mark>5,03</mark>
Masse m [g]	85,61	2,89	11,52
Masse ges. m_{ges} [g]	100,02	-	-

$$\rho_{th} = \left(\frac{m_{\text{Si}_3\text{N}_4}}{\rho_{\text{Si}_3\text{N}_4}} + \frac{m_{\text{Al}_2\text{O}_3}}{\rho_{\text{Al}_2\text{O}_3}} + \frac{m_{\text{Y}_2\text{O}_3}}{\rho_{\text{Y}_2\text{O}_3}}\right)^{-1} \cdot m_{ges} = \left(\frac{85,61}{3,20} + \frac{2,89}{3,99} + \frac{11,52}{5,03}\right)^{-1} \text{ cm}^{-3} \cdot 100,02 \text{ g} = 3,36 \text{ g} \cdot \text{cm}^{-3}$$

1.3 Gründichte durch geometrisches Ausmessen

Bei den zu charakterisierenden Proben handelt es sich um zylindrische Grünkörper. Aufgrund der einfachen Geometrie lässt sich die Gründichte ρ_K durch geometrisches Ausmessen nach Gleichung (10) berechnen. Hierfür werden die Masse des Grünkörpers m_K , dessen Höhe h und Durchmesser d benötigt. In Tabelle 7 sind diese für die einzelnen, bei unterschiedlicher Presskraft F hergestellten Grünkörper aufgezeigt. Des Weiteren ist die nach Gleichung (11) und mit der theoretischen Dichte aus 4.4 berechnete relative Dichte ρ_{rel} zu sehen.

Gleichung 10 war: $\rho = \frac{m}{V}$

 Tabelle 4: Vergleich der entsprechenden Dichten für unterschiedliche Presskräfte.

Presskraft F [kN]	m_K [g]	<i>d</i> [cm]	<i>h</i> [cm]	$ ho_K$ [g·cm ⁻³]	$ ho_{rel}$ [%]
50	3,9189	1,51	1,36	1,609	
100	4,3795	1,560	1,335	1,716	51,1
200	4,1770	1,500	1,715	1,378	
800	4,2265	1,458	1,29	1,962	